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SUMMARY 
Numerical experiments are performed to study rotational effects on the mixed convection of low-Prandtl- 
number fluids enclosed between the annuli of concentric and eccentric horizontal cylinders. The inner 
cylinder is assumed to be heated and rotating. The rotational Reynolds number considered is in the range 
where the effect of Taylor vortices is negligible. The Prandtl number of the fluid considered is in the range 
0.01-1.0. The Rayleigh number considered is up to lo6. A non-uniform mesh transformation technique 
coupled with the introduction of ‘false transient’ parameters to the vorticity and streamfunction-vorticity 
expressions was used to solve the governing set of equations. Results show that when the inner cylinder is 
made to rotate, the multicellular flow patterns observed in stationary cylindrical annuli subside in a manner 
depending on the Prandtl number of the fluids. Eventually the flow tends toward a uniform flow similar to 
that of a solid body rotation. For a fixed Rayleigh number and with a Prandtl number of the order of 1.0, 
when the inner cylinder is made to rotate, the mean Nusselt number is observed to decrease throughout the 
flow. For lower Prandtl number of the order 0.1-0.01 the mean Nusselt number remained fairly constant 
when the inner cylinder was made to rotate. The mean Nusselt numbers obtained were also compared with 
available data from other investigators. 
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INTRODUCTION 

Heat transfer and fluid flow processes in enclosed spaces have been extensively studied because of 
their importance in energy conversion, storage and transmission systems. Stationary horizontal 
concentric and eccentric annular geometries are most commonly encountered in solar 
collector-receiver systems, cooling systems in nuclear reactors, etc. Comprehensive and extensive 
reivews of these works have been collated by Kuehn and Goldstein’.2 and  other^.^-^ 

For mixed convection in the annulus between concentric or eccentric cylinders in a rotating 
system, most works have been performed for vertical cylindrical annuli. lo* Recently, rotational 
effects on natural convection in horizontal cylinders have become of interest to researchers.12 - 
Applications of these studies include food processing’*’ l 9  and the interest in seeking improved 
methods for crystallographic-perfection industrial processes.20* 21 Most of the above studies are 
for air with Pr =0.712-16 or with concentric cylindrical However, other effects of 
rotation on the heat transfer characteristics of low-Prandtl-number fluids are encountered in 
high-power electric machines with heated shafts, e.g. mercury slip-ring assemblies. This parameter 
was studied for a concentric case by Gardiner and Sabersky.22 Experiments were performed at 
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three different Prandtl numbers of 25 ,  4 5  and 6.5 and at Taylor numbers (rotational Reynolds 
number) up to about lo6. The results showed that the heat transfer coefficients generally 
increased with increasing Taylor number in a complex three-dimensional flow environment. The 
effects of varying Prandtl number on the velocity and temperature distributions were also studied 
by Singh and R a j ~ a n s h i ~ ~  for different cylinder eccentricities. A bipolar co-ordinate system was 
used to solve the two-dimensional energy equation with the temperature expressed in the form of 
a perturbation function. Fusegi et ~ 1 . ~ ~  and Prud’homme and Robillard’’ considered mixed 
convection between concentric horizontal cylinders with the inner cylinder rotating at constant 
angular velocity. The numerical experiments were limited to a range of parameters (specified by 
= Gr/Re2)  that specifically excludes the appearance of Taylor vortices. In furtherance of these 

works, other studies have also been carried out on mixed natural convection in horizontal 
eccentric annuli by Ratzel et aL2’ and Projahn et ~ 1 . ’ ~  

The present study investigates the fluid motion and heat transfer characteristics of fluid with 
low Prandtl number of order 0.01 -1.0 contained within a horizontal cylindrical annulus. Because 
of the excellent heat transfer characteristics of low-Prandtl-number fluids (e.g. liquid mercury), 
such fluids are increasingly being considered for use as the working fluid in several power- 
generating cycles. It is therefore of considerable importance to understand the convective fluid 
flow motion and heat transfer characteristics when such fluids are used. This low-Prandtl-number 
fluid flow situation also arises in cooling systems for electric motors of high power density and in 
the convective fluid motion in a heated cylinder with a mercury slip-ring assembly. For the 
present problem, where natural convection is driven by a vertical temperature gradient and 
vertical gravity force, the interaction with the effect of high rotational rate of the inner cylinder 
will be expected to lead to complicated three-dimensional flows with Taylor vortices. Here we 
purposely limited the calculations to a range of parameters that would exclude this possibility. 

GOVERNING EQUATIONS 

A schematic configuration of the eccentric annulus is shown in Figure 1. The inner cylinder is 
assumed to be heated and rotating. Flow in the annular region is assumed to be two-dimensional, 
steady and laminar, with an absence of Taylor vortices. The governing equations which describe 
the fluid motion of the incompressibe fluid between the annulus, based on the Boussinesq 
approximation, are then given by: 

momentum equation, 

continuity equation, 

energy transport equation, 

__- - _-_ vp b(T-  TR)g+vv2u; Du 
Dt P R  

v * u = o ;  

DT 
-=uV’T 
Dt 

Using the vector identity 

(V x u) x u=u.vu2/2, 
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INNER CYLINDER BOUNDARY F 

OUTER CYLINDER BOUNDARY 

Figure 1. (a) Co-ordinate system in eccentric annular flow region. (b) Non-uniform computational mesh in transformed 
domain 

taking the curl of (1) and invoking (2),  the resulting equation is 

84 
at 
- - V X ( U X ( ) =  -pVX(T-TR)g+VV2(,  

with the vorticity vector given by 

( = V x l l .  

(4) 

We introduce the dimensionless variables r* =r/L, t* = t / ( L 2 / a ) ,  u* =u/(cr/L), v* = v / (a /L) ,  
c*=(/(cr/L2), $ * = $ / a  and e = (  T -  TR)/T,, where r*, t*, u*, v*, $* and 0 represent the dimen- 
sionless radial co-ordinate, time, radial velocity, tangential velocity, streamfunction and temper- 
ature respectively. With TR = ( Ti + To) /2  and T, = ( Ti + T0) /2 ,  equations ( 3 )  and (4) give 

(6) 

(7) 

ao -+ u 2 .  ve=v2e, 
at 

a4 
at 
- - V x ( u x ( * ) =  - R a P r ( V x  8 g ) + P r ( V z ( * ) ,  
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where all variables are now in dimensionless form. Ra = gL3 T,/va is the Rayleigh number and 
Pr = v /a  is the Prandtl number. 

With the vorticity vector defined by (5) ,  the streamfunction vector v is defined such that 
a $-isoline is-a streamline, i.e. 

u = v x y l *  (8) 

(9) 

v v* =o. (10) 

c*= -v2v*. (1 1) 

Substituting (8) into ( 5 )  gives 

<* = v  x ( V  x v* ) ,  
and since yl* is required to be solenoidal, 

It can be shown that (9) can be written as a vector Poisson equation 

(From hereon the superscript asterisks representing dimensionless quantitites are dropped for 
simplicity.) 

The steady state solution of (6), (7) and (11) may be obtained by an iterative procedure, 
e.g. Jacobi iteration, or by various relaxation  method^.^' If the latter approach is used, then for 
each overall iteration loop of the set of steady state equations (a/at=O) there will be as many 
inner iteration loops as there are equations. Each of these inner iteration loops has to converge 
before the next overall iteration loop can be performed. For the set of steady state form (6), (7) and 
(1 1) this procedure can become very time-consuming. An improved method is to approach the 
steady state solution through the corresponding unsteady equations 

ae 
-+us at ve = v20, 

-- v x (U x l)= - RQ Pr(v x eg) + Pr(v*(), 
at (13) 

where t is dimensionless time. 
This time-dependent transient approach to the steady state solution is attractive. If there is 

more than one equation of the vorticity-transport type, then most of the inner iteration loops are 
eliminated. Unfortunately, (1 1) remains elliptic in form. Its numerical solution requires an 
iterative technique at each time step to determine the streamfunction at that time. The overall 
solution process is then multi-iterative. 

For the problems considered here we are only interested in the steady state solutions. The inner 
iteration loop of the streamfunction-vorticity equation c= - V2v seems an unnecessary burden 
in terms of computing effort. If the steady state solution is unique and is independent of the 
transient approach to it, then the steady state solution of (8)-(11) can be reached by introducing 
a transient term into the streamfunction-vorticity equation and treating the streamfunction as 
a transport quantity: 

Numerical experimentation shows that the stability characteristics of (12)-(14) vary according 
to the relative magnitudes of the source terms in the respective equations; also, convective 
stability of the flow does not affect (14). In terms of numerical stability with a fixed time increment 
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A t  and fixed mesh sizes, (14) was found to be the most stable and the vorticity transport equation 
(1 3) is numerically most unstable. Hence some ‘false transient’ terms are introduced into equation 
(14) to ‘speed up’ the solution and into equation (13) to stabilize the solution for a fixed time 
increment. The steady state solution is finally obtained through a set of ‘fast and stable’ transient 
equations 

ae 
-+u. at ve=v2e, 

For two-dimensional problems in cylindrical polar co-ordinates (15)-( 17) may be written as 

The velocities given by a streamfunction $ in dimensionless form are 

1 v =  a* u = - -  
r a4’  dr  

The values of a* lies between 1.0 and 10 and the values of ac lies between 0 0  and 1.0. The time step 
used in the numerical solution follows the Courant-Ferderic-Lewis conditions. 

GOVERNING EQUATIONS IN TRANSFORMED SPACED 

Figure l(a) shows the co-ordinate system of the annulus with an eccentricity CiCo=& at an angle 
a to the vertical axis. The transformed solution region (O<q< 1, 06y62.n) is shown in 
Figure l(b). The lines with constant q in the transformed solution region correspond to eccentric 
circles in the original solution region of Figure 
defined as 

l(a). In the transformed solution region (q, y )  is 

Y = (Yref - a )  + 4 ,  (22) 

where 

r, = R,, ri = E cos 4 + [ ( E  cos 4)’ + R: - E ~ ]  ‘ I 2  for E + R,  < R, and E < R i .  

By replacing all the partial derivatives in (18)-(21) with partial derivatives with respect to the 
transformed variable, the (dimensionless) equations become 
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BOUNDARY CONDITIONS 

At the boundaries + is constant since there is no flow across the boundaries, i.e. 

*(, = 1) = $0 = 0, $(q=O)=+i=f(Re), (28) 
wheref( Re)  is determined by the requirement that the pressure distribution be single-valued. 

Reynolds number Re= R i o L / v  and assuming no slip at the boundaries, we have 
With the inner cylinder rotating at an angular velocity (o corresponding to a rotational 

u(q=O)=O, u ( ~ = l ) = O ,  u(q=O)=RePr, v (q= 1)=0. (29) 
8 at the boundaries is given by 

e(,=o)= 1, e ( q = i ) = - i .  

At the inner and outer boundaries + =constant, hence 

NUMERICAL METHODS 

The solution region in Figure l(a) is ‘cut’ along the y=yref radial line and stretched into 
a rectangular y-q domain as defined by equation (22) and shown in Figure 1 (b). In order to obtain 
better resolution of the solution near the wall regions while preserving the second-order accuracy 
of the finite difference scheme, the continuous rectangular domain is then overlayed with 
a non-uniform finite difference mesh generator as shown in Figure l(b) and given by 

2 F =- sin ( q  
I( 

At the node points the finite difference solutions to (23)-(3 1) with their boundary conditions are 
obtained. The numerical procedure used involves an alternating direction implicit (ADI) method 
originally proposed by Peaceman and Rachford2’ which is modified here by the inclusion of 
a weighted time step factor cr and the false transient parameter at. 

For the vorticity transport equation the advancement over one time step is accomplished 
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through 

where (c )*  and (()** are dummy variables, A, and A,, are matrix operators formed through finite 
differencing of the governing equations in the y- and q-direction respectively, (S,)" is the source 
term evaluated at the most recent solution field and I is an identity matrix. This scheme is 
equivalent to 

For a =-f the above scheme corresponds to the Crank-Nicholson equation. 
The same method is adopted in solving the temperature and streamfunction-vorticity equa- 

tions. All spatial derivatives are approximated by second-order-accurate central differences. The 
convective terms in (19) and (20) are approximated by using a second-order upwind differencing 
method. The mixecl spatial derivatives resulting from the mesh transformation are handled by the 
method proposed by McKee and Mit~hell.'~ The resulting linear set of finite difference equations 
is then solved by an algorithm due to Thomas (see Reference 27). Three-point backward and 
forward difference formulae are used for derivatives at the boundaries. 

The streamfunction $o on the outer cylinder wall is arbitrarily set to zero. For the stationary 
inner cylinder the streamfunction t,hi on the inner cylinder wall is set equal to the outer cylinder 
streamline value. This is because the rising plume touches the outer cylinder wall and the net 
circulating volumetric flow rate round the cylinders is zero when the inner cylinder is not rotating. 
When the inner cylinder is made to rotate, the streamline value at the inner rotating cylinder wall, 
t,hi, cannot be preassigned. The use of at,h/an= wall velocity gives a solution for which a $ / a s # O  
along the wall of the inner cylinder. This implies that fluid was numerically 'leaked' through the 
moving inner cylinder wall. In the present study t,hi is determined using the criterion that the 
pressure distribution in the solution region is a single-valued function. Mathematically, this 
criterion implies that the line integral of the pressure gradient aP/as along any closed loop 
circumscribing the inner cylinder is zero, i.e. $ (dP/as)  ds = 0. a P/as can be evaluated from the 
momentum conservation equations. 

The finite difference boundary vorticity values are obtained by considering the Taylor series 
expansion of + into the solution region and taking into consideration the values of + and velocity 
at the boundary through (31), i.e. 

where the inner cylinder wall node point is at j =  1 and the outer cylinder wall node point is at 
j =  N .  

The heat transfer at the inner cylinder wall is defined by the local Nusselt number 
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The average Nusselt number is then determined from 

Nu = N u  dy/271. (38) 

The mean Nusselt number is also used as the quantity to indicate steady state convergence. The 
mean Nusselt number is computed at every 20th iteration. The steady state criterion is said to 
have been satisfied when a difference of less than 0.1 YO of a reference Nusselt number is detected. 
The computation of the Nusselt number requires differentiation of the temperature function and 
should therefore converge at a lower rate than the latter. This has proven satisfactory. The 
streamfunction, velocity, temperature and voriticity fields are noted to be steady when the Nusselt 
number is steady. 

RESULTS 

The discussion here is based on the steady state results obtained from the false transient solutions 
of the governing equations with initial values of $, u, v, 8 and [ all set to zero, except the 
temperatures at the inner and outer cylinder walls. The temperature is + 1 at the inner wall and 
- 1 at the outer wall. The solutions were initially tested with time steps of 0.1, 0.01, 0.001 and 
0.0001 and mesh sizes of 21 x 41,41 x 81,81 x 161 and 161 x 321. It was found that variations in 
the solution fields were not significant (of the order of 0.1 YO in the temperature field, 0.1 YO in the 
streamline field, 0.2% in the vorticity field and 0.1% in the mean Nusselt number obtained) 
between time steps of 0.001 and 0.0001 and mesh sizes of 81 x 161 and 161 x 321. Hence for the 
results obtained here a dimensionless time increment of 0001 and a mesh size of 81 x 161 were 
used. 

With the above time step and mesh size the model was initially tested for validity with 
stationary cylinders of concentric configurations, for which data from other investigators are 
readily available for comparison. The numerical results of Ra versus at radius ratios 
RR= 1.25, 2.6 and 5.0 are shown in Figure 2. Converted experimental data of Kuehn and 
Goldstein’,’ for RR = 2.6 are also shown. The correlation curves of Raithby and Holland3’ for 
RR=2.6 and 1.25 and the numerical results of Yang et a1.20g21 for RR= 1.4 and 2.6 and of 
Projahn et aLZ6 for RR=2-6 are also plotted in the same figure. The present numerical 
experiments indicate very good agreement with all these results. 

Figure 3 shows the effects of vertical eccentricity on the flow and temperature distributions at 
Ra = lo5, Pr = 1.0,O-1 and 0.01, RR = 2.6 and Re =O for vertical eccentricities E, =$, 3, -3, -3. The 
immediate effect of displacing the inner cylinder downwards is to increase the convective region 
above the inner cylinder. Figure 3(a) shows that for Pr = 1.0 the single thermal plume above the 
inner cylinder is enhanced when the inner cylinder is displaced downwards. For Prandtl number 
of 0*1-0.01 the bithermal plumes observed at some vertical eccentric locations are eliminated 
when the inner cylinder is displaced downwards (Figures 3(a) and 3(b)). Figure 4 shows the 
corresponding horizontal Qsplacement of the inner cylinder from eh = -$ to &h =$. This has the 
effect of ‘squeezing’ the flow cells in the direction of the eccentricities and creating an ‘open space’ 
for the enhancement of the convective fluid motion. Further numerical experiments show that if 
the Rayleigh number is small (Ra < lo3), no convective motion can take place for any value of the 
Prandtl number. The mean Nusselt number and the isotherm plots resemble those of pure 
conduction. The isotherms form concentric circles surrounding the inner cylinder. As the 
Rayleigh number increases, the convective strength increases. When the convective flow becomes 
strong enough, temperature inversion begins to take place and the basic counter-rotating pair of 
‘crescent-shaped’ cells will be modified. The extent to which and the manner in which the 



LAMINAR FLUID CONVECTION BETWEEN ROTATING CYLINDERS 1045 

I 1 6  PROJAHN t t  01 I l D I I  t 
A R R =  2 8  VANG el ai  11918 I 

0 CR = I L YANG e l  a1 I1918 1 

RAYLEIGH NUMBER t R a )  

Figure 2. Mean Nusselt number versus Rayleigh number at various radius ratios (eccentricity ~=0.0) 

modifications of the basic flow patterns take place depend very much on the Rayleigh number, 
Prandtl number and radius ratio as well as on the eccentricity of the inner cylinder. In general, it 
is observed that the convective mode of heat transfer is enhanced when eccentricity is introduced 
to the inner cylinder. 

When the inner cylinder is made to rotate, the corresponding flow and temperature fields are as 
shown in Figures 5 and 6. A general trend is observed. With the inner cylinder rotating in the 
counterclockwise direction, any cell on the right of the inner cylinder will be dragged upwards by 
the viscous drag. At the same time, any cell on the left of the inner cylinder is dragged downwards 
by the viscous action of the inner cylirlder rotation. The isotherms are thus tilted in the direction 
of rotation from the corresponding stationary cases. The degree of destruction of the left-hand cell 
and the degree of enhancement of the right-hand cell depend greatly on the basic flow. For a given 
Rayleigh number the general effect of tilting the thermal plume in the direction of rotation is more 
pronounced at higher Prandtl number. At higher rotational Reynolds number the convective 
strength as compared with the viscous drag induced by rotation is negligible. The immediate 
effect of rotating the inner cylinder is to set up a Couette-like rotation where all the fluid within 
the same annular spaces is rotating with virtually the same speed. These Couette-like flows are in 
the form of concentric circles surrounding the inner cylinder. The thermal plume tends to diffuse 
and the isotherms form circular rings surrounding the inner cylinder, suggesting that the mode of 
heat transfer is dominated by conduction. 

For low-Prandtl-number fluid flow, as mentioned above and shown in Figures 3 and 4, 
a symmetrical bithermal plume was observed above the inner cylinder at certain eccentricities. 
The flow pattern in the annulus is observed to be multicellular in these cases. The heat transfer 
characteristics for these fluid flows with low Prandtl number were found to have points of 
maximum and minimum at the interior nodes, instead of at the top and bottom nodes which is 
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STREAMLINES ( a )  ISOTHERMS 

Figure 3. Streamlines and isotherms at various vertical eccentricities (RR=26 ,  Ra= lo5, Re=O): (a) Pr = 1.0; (b) Pr=O.l; 
(c)Pr=001; ( i )~"=+;  (ii)G=+; (iii) E,= -+; ( i v ) ~ , =  -4 
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STREAMLINES ( b )  ISOTHERMS 

Figure 3. (Continued) 
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STREAMLINES 

Figure 3. (Continued) 
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I I \ ,  

(b)Pr=O.l; (c)Pr=0.01; (i)Eh= -3;  (ii)Eh=O.O; (iii)Eh=$ 

STREAMUNES 
ISOTHERMS 

Figure 4. Streamlines and isotherms at various horizontal eccentricities (RR=2.6. Ra= lo5. Re=O): la) Pr= 1.0: 
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(ii) 

(iii) 

Figure 4. (Continued) 
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(ii) 

ISOTHERMS ( C )  STREAMLINES 

Figure 4. (Continued) 
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( i i )  

(iii) 

STREAMLINES ( a )  ISOTHERMS 

Figure 5. Inner cylinder rotation with various vertical eccentricities (RR = 2.6, Ra = lo5, Re = 560): (a) Pr = 1.0; 
(b) Pr=O.l;  (c) Pr=O.Ol; (i)E,=& (ii) s=+; (iii)ev= -4; (iv)E,= - 3  



LAMINAR FLUID CONVECTION BETWEEN ROTATING CYLINDERS 1053 

(ii) 

(iii) 

STREAMLINES ( b )  ISOTHERMS 

Figure 5. (Continued) 
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[iii) 

STREAMLINES ( C )  ISOTHERMS 

Figure 5. (Continued) 



LAMINAR FLUID CONVECTION BETWEEN ROTATING CYLINDERS 1055 

STREAMLINES 

(iii) 

( a )  ISOTHERMS 

Figure 6. Inner cylinder rotation with various horizontal eccentricities (RR =2.6, Ra = lo5, Re = 560): (a) Pr = 1.0; 
(b) Pr=O.l;  (c) Pr=O.Ol; (i) eh= -3 ;  (ii) &h=0'0; (iii) & h = +  
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( i i )  

(iii) 

STREAMINES ( b )  ISOTHERMS 

Figure 6. (Continued) 
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( i i )  

(iii) 

sTREAML1m ( C l  ISOTHERMS 

Figure ,6. (Continued) 
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I I 

- ( a  1 legend - 

known for high-Prandtl-number fluids. When the inner cylinder is made to rotate, the flow 
pattern becomes more complex (Figures 5 and 6). The multicellular flow with its bithermal plume 
on one side of the annulus for low-Prandtll-number fluid flow is suppressed. The net effect is that 
a single thermal plume is observed to move in the direction opposite to that of the inner rotating 
cylinder. This thermal plume movement is distinctly different and opposite to that observed for 
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Figure 7. Effect of rotation of inner cylinder on mean Nusselt number at various Ra (RR =2.6): (a) Pr=  1.0; (b) Pr=O.l; 
(c) Pr = 0.01 
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Figure 7. (Continued) 

high-Prandtl-number fluid flow, where the monothermal plume on top of the inner cylinder 
moves in the same direction as the rotation of the inner cylinder. 

The corresponding effect of increasing the rotational speed of the inner cylinder on the mean 
Nusselt number with varying Rayleigh and Prandtl numbers is shown in Figure 7. The general 
trend is that at higher Prandtl and Rayleigh numbers (Figure 7(a)) the mean Nusselt number falls 
with increasing rotational speed of the inner cylinder. The drop in the value of mean Nusselt 
number was also visualized with the aid of the streamline and temperature contours in the 
numerical experiments. At high rotational rate (i.e. high R e )  the thermal plume formed by natural 
convective motion above the inner cylinder gradually disappeared. The isothermals near the 
inner cylinder gradually formed into concentric rings and the isotherm spacing gradually 
increased, indicating a drop in temperature gradient and hence a drop in mean Nusselt number. 
When eccentricity is introduced, the general trend is that the mean Nusselt number falls off from 
its stationary value with increasing rotational Reynolds number in a manner similar to the 
behaviour of the concentric case. 

For the case of low Prandtl numbers of 01-0.01 Figures 7(b) and 7(c) show that as the 
Rayleigh number increases, the overall equivalent thermal conductivity increases. This is ex- 
pected since the mode of heat transfer changes from conduction to convection as the Rayleigh 
number increases. However, at a particular Rayleigh number the variation in the overall 
equivalent thermal conductivity is negligible when the Reynolds number is increased. For the 
case of a Rayleigh number of lo3 and a Prandtl number of 0.01 the overall equivalent thermal 
conductivity varies from a minimum of 1.02 at a Reynolds number of 140 to a maximum of 1.10 at 
a Reynolds number of 1120. The value of the overall thermal conductivity approaches 1.0, 
indicating that the mode of heat transfer is essentially conduction. When the Rayleigh number 
was increased to lo5, it was noted that the overall thermal conductivity varies between a max- 
imum value of 2-01 and a minimum value of 1-80. From the above studies it can be concluded that 
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for a given Rayleigh number in the range 103-106 the overall equivalent thermal conductivity is 
almost constant for low-Prandtl-number fluids when the inner cylinder is made to rotate in the 
Reynolds number range 0-103, though the streamlines, isotherms and local equivalent thermal 
conductivities exhibit very different features. 

CONCLUSIONS 

For the range of Prandtl numbers considered here, numerical experiments show that the mean 
Nusselt number increases with increasing Rayleigh number for both concentric and eccentric 
stationary inner cylinders. At a Prandtl number of order 1.0 with a fixed Rayleigh number, when 
the inner cylinder is made to rotate, the mean Nusselt number decreases throughout the flow. 
Although the flow pattern observed in this study varies significantly with respect to the rotational 
Reynolds number at lower Prandtl numbers of the order 0.1-0.01 with a given Rayleigh number, 
the mean Nusselt number remains fairly constant with respect to the rotational Reynolds 
number. 
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APPENDIX. NOMENCLATURE 

gravitational vector 
characteristics length L= Ro- Ri 
mesh sizes 
local Nusselt Number 
mean Nusselt Number 
pressure gradient 
Prandtl Number, Pr = V/OI 

radial co-ordinate 
inner and outer cylinder radii 
radius ratio, RR = RJRi 
Rayleigh Number, Ra=figL3 Tm/av 
rotational Reynolds number of inner cylinder, Re = Rim L/v 
time and time increment 
temperature 
temperatuers of inner and outer cylinders 
reference temperature, TR = ( Ti + T0)/2 
radial velocity 
tangential velocity 

Ti- T0/2 

Greek letters 

U thermal diffusivity or angular position of eccentricity vector E measured anticlockwise 
from downward vertical of gravitational vector through centre of heated cylinder 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15 

thermal coefficient of volumetric expansion or a q / a r  * in transformed solution 
domain 
eccentricity, i.e. distance between centres of inner and outer cylinders 
horizontal eccentricity (positive to right) 
vertical eccentricity (positive upwards) 
dimensionless transformed radial co-ordinate, q = ( r  - ri)/( ro - ri) 
dimensionless temperature, 0 = ( T-  TR)/  T, 
angular co-ordinate of original solution region measured from downward vertical 
through centre of outer cylinder 
angular co-ordinate of transformed solution region measured from reference angle 4c 
from vertical through centre of outer cylinder, y = 4 -( +c - a )  
aq/a&t, a2q/a&t2 respectively in transformed co-ordinates 
kinematic viscosity 
reference density corresponding to TR 
angular co-ordinate 
angular velocity of inner rotating cylinder (positive anticlockwise) 
streamfunction 
vorticity 
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